Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Inverse decays are an interesting avenue for producing dark matter in the early Universe. We study in detail various phases of dark matter parameter space where inverse decays control its abundance, expanding on our work of inverse decay (INDY) dark matter and going beyond. The role of initial conditions and the impact of departure from kinetic equilibrium are investigated as well. We show how these inverse decay phases can arise in theories of a kinetically mixed dark photon and dark Higgs, with promising prospects for detection at upcoming experiments.more » « lessFree, publicly-accessible full text available August 1, 2026
-
A<sc>bstract</sc> We propose a model that provides a simultaneous solution to the doublet-triplet splitting problem of grand unified theories, the electroweak hierarchy problem and the strong CP problem. The mechanism is based on the dynamics of two axion-like particles that would crunch the universe at the time of the QCD phase transition if triplets were light or had a VEV or if doublets were heavy or did not have a VEV. The only trace left at low energies are these two axion-like particles. They are weakly coupled to the Standard Model and could be detected at upcoming axion experiments or by a combination of neutron EDM measurements and the astrophysical detection of fuzzy dark matter.more » « lessFree, publicly-accessible full text available February 1, 2026
-
A<sc>bstract</sc> We investigate the dynamics responsible for generating the potential of theη′, the (would-be) Goldstone boson associated with the anomalous axial U(1) symmetry of QCD. The standard lore posits that pure QCD dynamics generates a confining potential with a branched structure as a function of theθangle, and that this same potential largely determines the properties of theη′once fermions are included. Here we test this picture by examining a supersymmetric extension of QCD with a small amount of supersymmetry breaking generated via anomaly mediation. For pure SU(N) QCD without flavors, we verify that there areNbranches generated by gaugino condensation. Once quarks are introduced, the flavor effects qualitatively change the strong dynamics of the pure theory. ForFflavors we find |N − F| branches, whose dynamical origin is gaugino condensation in the unbroken subgroup forF < N –1, and in the dual gauge group forF > N+ 1. For the special cases ofF=N –1,N,N+ 1 we find no branches and the entire potential is consistent with being a one-instanton effect. The number of branches is a simple consequence of the selection rules of an anomalous U(1)Rsymmetry. We find that theη′mass does not vanish in the largeNlimit for fixedF/N, since the anomaly is non-vanishing. The same dynamics that is responsible for theη′potential is also responsible for the axion potential. We present a simple derivation of the axion mass formula for an arbitrary number of flavors.more » « less
-
A bstract We introduce Super-Resonant Dark Matter , a model of self-interacting dark matter based on the low energy effective theory of supersymmetric QCD. The structure of the theory ensures a resonant enhancement of the self-interactions of the low energy mesons, since their mass ratio is set by the number of colors and flavors. The velocity dependence of the resonantly enhanced self-interactions allows such theories to accommodate puzzles in small scale structure that arise from dark matter halos of different sizes. The dark matter mass is then predicted to be around 3–4 MeV, with its abundance set by freeze-in via a kinetically mixed dark photon.more » « less
An official website of the United States government
